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Abstract—Knowledge distillation has emerged as a promis-
ing method for unsupervised anomaly detection. However, the
overgeneralization of the student network often reduces the
distinction between teacher and student representations for
anomalous samples, leading to detection failures. To address
this problem, we propose a Denoising Teacher-Student Network
(DTSNet), which integrates two teacher networks: a normal
teacher and an anomalous teacher. These networks guide the
student network in feature-space denoising, enabling it to restore
anomalous features and amplify the representational disparity
for anomalies. Furthermore, we propose an Attention-guided
Perturbation Reconstruction (APR) module, which facilitates the
student network to focus on critical pixel regions, enhancing its
feature representation capability. Experimental results demon-
strate that the proposed DTSNet outperforms several state-of-
the-art methods on the MVTec AD, VisA, and BTAD datasets.
Source code is available at http://www.linshuyuan.com.

Index Terms—Anomaly detection, knowledge distillation, self-
supervised

I. INTRODUCTION

Image anomaly detection (AD) refers to the task of iden-

tifying and localizing regions within an image that deviate

from normal patterns. It has broad applications in fields such

as industrial quality inspection [1], medical screening [2] and

video surveillance [3]. Nevertheless, in practical scenarios,

anomalous samples are often scarce and challenging to collect.

Consequently, AD is redominantly addressed in an unsuper-

vised manner, relying solely on normal samples for training.

Recent studies [4]–[6] have shown that pretrained convolu-

tional neural networks, as versatile visual feature extractors,

achieve state-of-the-art performance in AD tasks. Among the

various techniques, knowledge distillation based on teacher-

student (TS) networks has emerged as an effective framework

[7], [8]. In this framework, the student network learns to

replicate the feature representations of normal images from the

teacher network, which is typically pretrained on large-scale

datasets such as ImageNet [9]. During inference, anomaly
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detection and localization rely on analyzing the feature differ-

ences between student and teacher networks. Regions with mi-

nor differences are classified as normal, whereas regions with

substantial differences are identified as anomalies. However, a

critical limitation of this approach is the overgeneralization

of the student network, causing it to extract features from

anomalous samples that closely resemble those of the teacher

network, thereby compromising detection performance.
To address this issue, the reverse distillation (RD) [10] in-

troduces a reverse distillation paradigm, in which the encoder

acts as the teacher and the decoder serves as the student. This

design partially mitigates the limitations of insufficient output

discrepancies arising from identical data flows. However, due

to the absence of explicit constraints on anomalous samples, it

fails to guarantee consistent features differences between the

TS networks for such samples. Existing methods [11], [12]

attempt to overcome this limitation by employing memory

modules to enhance the student network’s retention of normal

data, thereby reducing the likelihood of generating represen-

tations for anomalous samples. However, the inclusion of

memory modules not only increases computational overhead

but also reduces the model’s inference speed, limiting their

practicality in real-world applications.
To amplify the representation differences of anomalous

features between the teacher and student networks, we propose

to explicitly denoise and refine the student’s feature represen-

tations via an anomaly synthesis paradigm. To achieve this,

we propose a dual-teacher framework consisting of a normal

teacher network and an anomalous teacher network. These

teacher networks collaboratively guide the student network

to restore anomalous feature, thereby establishing a more

discriminative decision boundary. Additionally, to enhance stu-

dent’s feature representation capacity, we propose an attention-

guided perturbation reconstruction module. This module en-

courages the student network to focus on the relationships

between noise-perturbed key regions and their surrounding

contexts, rather than simply mimicking the teacher’s output

features in the visible regions. As a result, the student network

can generate robust and comprehensive feature representations,

improving its ability to differentiate anomalies.
Our contributions are summarized as follows:

• We propose a denoising teacher-student network (i.e.,

DTSNet) based on reverse knowledge distillation, de-



Synthetic Anomalous 
Image g

Normal Image 

APR APR APR

Anomalous Teacher (AT) Network

Normal Teacher (NT) Network 

Student Network

FAS

MFF

ResBlock

AT Feature Spatial Attention Noise

Student Feature Noise Feature

Reconstruct Block

C
on

v-
3

C
on

v-
3

R
eL

U

Froze WeightForward TrainableBackprop

NT Feature

Guide

APR

Fig. 1. Overview of DTSNet during training. The student network receives features extracted by the anomalous teacher and learns to restore anomalous
features under the guidance of the normal teacher. The knowledge distillation process is guided by the APR module, which incorporates noise into the student
features. The noise distribution is controlled by the spatial attention of the teacher features. These noisy features are then reconstructed using teacher-guided
convolutional blocks, enabling the student to extract critical knowledge from the noise.

signed to address the overgeneralization issue commonly

observed in traditional knowledge distillation models.

• We propose an Attention-Guided Perturbation Recon-

struction (i.e., APR) module, which enables the student

network to focus on critical pixel regions in noisy envi-

ronments, enhancing its feature representation capacity.

• We conduct extensive experiments on three AD bench-

marks, demonstrating the superiority and effectiveness of

the proposed DTSNet.

II. PROPOSED METHOD

A. Overall Framework

The overall framework of the proposed DTSNet is il-

lustrated in Fig. 1. Starting with the original TS structure

of reverse distillation, we design a denoising TS network.

Specifically, during the training process, the student network

receives features extracted by the anomalous teacher network

and learns to restore the anomalous features under the guid-

ance of the normal teacher network. Subsequently, the APR

module perturbs the important pixels of the student network to

encourage it to generate feature representations that are closer

to those of the normal teacher network. During the inference

phase, the teacher network captures anomalous feature, while

the student network transforms them into normal features. The

discrepancy between these features is utilized to evaluate pixel-

level anomaly scores.

B. Foreground-Aware Anomaly Synthesis

Anomaly synthesis strategies have been widely applied in

AD. A common strategy involves combining textures from the

Describable Textures Dataset (DTD) [13] with Perlin noise

[14] masks to generate local texture anomalies [15]. However,

in industrial scenarios, anomalies often occur only in the

foreground where objects are located. Synthesizing anomalies

across the entire image is likely to result in significant dis-

crepancies between synthetic anomalies and real anomalies.

To address this limitation, we propose a foreground-aware

synthesis (FAS) strategy to enhance anomaly diversity and

better suit industrial scenarios. As shown in Fig. 2, we first use

Inverse

Union

Fig. 2. Illustration of the proposed FAS, where the union operation is
employed to generate the final anomaly mask. Visually inconsistent patterns
are integrated into normal samples to create synthetic anomalies.

IS-Net [16] to extract the target foreground region Mf , and

then generate two binary masks, M1 and M2, using Perlin

noise. To increase diversity, we construct the final anomaly

mask M by combining the intersection or union of M1 and

M2 [17]:

M =

{
M1 ∩M2 �Mf , if 0 ≤ p ≤ α

M1 ∪M2 �Mf , if α < p ≤ 1
, (1)

where � denotes the element-wise multiplication; α is set to

0.5, and p ∼ U(0, 1). Finally, we take a linear combination of

the normal image In and a random image Ir from the DTD,

replacing the mask regions to generate the final anomalous

image. The synthetic anomaly image Ia can be obtained by

the proposed FAS as follows:

Ia = β(M � In) + (1− β)(M � Ir) +M � In, (2)

where M is the inverse of M , and β is the opacity parameter,

randomly selected within the range [0.15, 1], to enhance the

fusion of normal and anomalous regions.

C. Reverse Distillation

Following previous work [10], [18], we use the first three

blocks of a WideResNet50 pretrained on ImageNet as the
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Fig. 3. Illustration of the proposed MFF.

teacher network to extract comprehensive representations from

both normal and anomalous images. The output feature maps

are denoted as fk
T,n, fk

T,a ∈ R
Ck×Hk×Wk , where Hk, Wk,

and Ck are the height, width, and number of channels of

the output feature of block k. The student network is a

reversed symmetrical counterpart of the teacher network and

is randomly initialized, aiming to reconstruct the outputs of

the teacher network. The output feature maps of the student

network are represented as fk
S ∈ R

Ck×Hk×Wk .

Since the activations of the last layer of the teacher network

contain high-level semantic information, directly transferring

them to the student network may impede the reconstruction

of low-level features. Given the outstanding performance of

multiscale feature fusion in target detection [19], an intuitive

approach is to employ a channel attention mechanism com-

bined with a multiscale fusion strategy to efficiently integrate

the visual and semantic information from each layer of the

teacher network. To this end, we propose a multiscale feature

fusion (MFF) module as illustrated in Fig. 3. Unlike RD, this

module applies coordinate attention (CA) [20] to weight fea-

tures from different hierarchical levels, then aligns the feature

maps using a 3×3 convolution, and finally performs multiscale

feature fusion via element-wise addition. Subsequently, the

fused features are compressed into a more compact feature

space using the fourth residual block of the ResNet, assisting

the student network in better reconstructing low-level features.

D. Attention-Guided Perturbation Reconstruction

Reconstructing key features in noisy environments is chal-

lenging for the student network, especially due to its capacity

limitations compared to the teacher network. To address this

issue, we propose the APR module, which synthesizes noise

following the principles of noisy feature distillation [21] and

leverages spatial attention to guide the student network’s

focus toward critical pixel regions. Specifically, we introduce

unbiased Gaussian noise εk ∼ N (0, σ2) to perturb the output

feature fk
S of the student network. Due to the typically signif-

icant capacity gap between the teacher and student networks,

the latter often struggles to identify key information when

processing a large quantity of similar information. Therefore,

we filter the output from the teacher network through a spatial

attention mask [22] to adjust the noise distribution, helping

the student network to focus more on important pixels. In
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Fig. 4. Online inference of the proposed DTSNet combines the teacher
network, the student network, and the bottleneck layer frozen.

particular, we first calculate the absolute mean value of each

pixel across the channel dimension in the teacher network’s

output feature fk
T,a:

Gk
T =

1

Ck

Ck∑
c=1

|fk
T,a,c|, (3)

where Gk
T ∈ R

Hk×Wk represents the spatial attention map.

Subsequently, the attention mask is defined as follows:

Ak
T = Hk ·Wk · softmax

(
Gk

T

τ

)
, (4)

where τ is a temperature hyperparameter that adjusts the

distribution [23]. Next, the attention mask is used to adjust

the noise standard deviation on a pixel-wise basis. To align the

noise distribution more closely with the student features, we

compute the standard deviation ϑ(fk
S) of the student features.

The adjusted noise is then added to the student network’s

output features as follows:

σ′ = σ · ϑ(fk
S) ·Ak

T , (5)

f̃k
S = fk

S + ε′k, (6)

where ε′k ∼ N
(
0, (σ′)2

)
and σ is the hyperparameter for

adjusting the standard deviation of the noise. Finally, the

perturbed features are restored by a reconstruction block

guided by the teacher network as follows:

fk
R = R(f̃k

S), (7)

where R represents the reconstruction block composed of two

3× 3 convolutional layers.

In our TS knowledge transfer model, the student network’s

decoding process can be regarded as an anomaly feature

restoration process. To measure the consistency between the

feature representations of the teacher and student network, we

compute their cosine similarity as follows:

Lkd =
3∑

k=1

(1− F(fk
T,n)

� · F(fk
R)

‖F(fk
T,n)‖ · ‖F(fk

R)‖
), (8)
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Fig. 5. Qualitative results on MVTec AD [1] dataset. Compared to RD [10], the proposed DTSNet demonstrates superior localization accuracy across various
types of anomalies.

where F(·) denotes the operation of flattening the features into

a one-dimensional vector.

E. Inference

The inference process of the proposed DTSNet is shown in

Fig. 4. Specifically, when the query image exhibits anomalies,

the teacher network is capable of capturing these anomalous

features, while the student network restores them in the

feature space. Consequently, the teacher and student networks

generate inconsistent feature representations. For anomaly lo-

calization, we compute the cosine similarity along the channel

axis between fk
T and fk

R to generate the 2D anomaly map Mk

as follows:

Mk(h,w) = 1− (fk
T (h,w))

� · fk
R(h,w)

‖fk
T (h,w)‖ · ‖fk

R(h,w)‖
, (9)

where the values in Mk indicate the degree of anomaly at

each point of the k-th feature map. Next, we upsample Mk

to match the size of the original image and generate the final

score map SAL by combining the anomaly maps from the three

stages as follows:

SAL(h,w) =
3∑

k=1

Ψ(Mk), (10)

where Ψ denotes the bilinear upsampling operation. For

anomaly detection, the image-level anomaly score is repre-

sented by the maximum value in the score map.

III. EXPERIMENTS

A. Datasets

We conduct experiments on three commonly used unsuper-

vised AD benchmarks. MVTec AD [1] is the most widely used

industrial AD dataset, consisting of 10 object categories and

5 texture categories, with a total of 4,096 normal and 1,258

anomalous images. VisA [26] is a challenging industrial AD

dataset that covers 12 object categories, with 9,621 normal and

1,200 anomalous images. BTAD [27] contains 2,540 images

of real-world products with three different types of defects.

B. Experimental Settings

Following the previous work [10], all images are resized

to 256 pixels. No additional image augmentation techniques

are applied, except for anomaly synthesis. We train for 10–400

epochs using the Adam optimizer, with a learning rate of 0.005

for the student network and bottleneck module and, 0.001

for the reconstruction module. The noise adjustment hyper-

parameter σ is set to 0.1. The experiments are implemented

in PyTorch and conducted on a single Nvidia RTX 3090 GPU.

C. Evaluation Metrics

We employ the area under the receiver operating charac-

teristic curve at the image level (I-AUROC) and at the pixel

level (P-AUROC) as evaluation metrics for anomaly detection

and localization. In addition, for the pixel-level anomaly lo-

calization, we also use the per-region-overlap (PRO) [7] score

to provide a more comprehensive assessment of localization

performance.

D. Anomaly Detection and Localization

The anomaly detection and localization results on the

MVTec AD dataset are reported in Table I. The proposed DT-

SNet achieves competitive performance across all categories,

reaching the highest I-AUROC in 6 out of 15 categories. The

average I-AUROC is 99.3%, which is 0.8% higher than that

obtained by RD and only 0.2% lower than that of SimpleNet.

For the pixel-level anomaly localization, DTSNet outperforms

all the competing methods in both the P-AUROC and the more

robust PRO score. Notably, the PRO score is 1.2% higher

than the second-best method (i.e. RD), highlighting its superior

anomaly localization capabilities. Some representative samples

of anomaly localization are visualized in Fig. 5.

Table II presents the results of the proposed DTSNet on

the VisA and BTAD datasets. For the VisA dataset, the

proposed DTSNet achieves a state-of-the-art performance,

with I-AUROC, P-AUROC, and PRO of 97.1%, 99.0%, and

95.5%, respectively. Similarly, for the BTAD dataset, the

proposed DTSNet outperforms existing methods(i.e. DRAEM,

PatchCore, SimpleNet, AST and RD), particularly in the PRO

metric, showing an improvement of 3.5% over the previous



TABLE I
ANOMALY DETECTION AND LOCALIZATION ON MVTEC AD. RESULTS ARE SHOWN FOR I-AUROC/P-AUROC/PRO METRICS DEFINED IN SECTION

III-C (IN %), WITH THE HIGHLIGHTED IN BOLD.

Category DRAEM [15] PatchCore [4] SimpleNet [6] AST [24] RD [10] DTSNet

Carpet 93.3/92.2/92.9 98.7/99.0/96.6 99.7/97.7/88.4 97.3/97.0/89.4 98.8/99.0/97.1 100/99.3/97.9
Grid 100/99.7/98.3 98.2/98.7/95.9 99.2/94.8/86.9 98.8/96.4/85.1 100/99.2/97.3 100/99.3/97.7
Leather 100/98.8/97.4 100/99.3/98.9 100/99.2/96.7 100/97.5/94.7 100/99.4/99.1 100/99.5/99.2
Tile 100/99.6/98.2 98.7/95.6/87.4 99.9/93.8/88.0 99.9/92.7/83.5 99.3/95.6/90.6 98.6/96.4/92.2
Wood 99.6/95.8/90.3 99.2/95.0/89.6 100/93.7/83.1 99.9/87.0/76.9 99.1/95.3/90.8 99.7/96.2/93.7
Bottle 96.6/99.3/96.8 100/98.6/96.1 100/98.0/91.1 100/91.6/83.6 100/98.7/96.7 100/98.8/97.1
Cable 94.4/96.2/81.0 99.5/98.4/92.6 100/97.4/90.9 97.3/94.2/83.0 95.9/97.1/90.5 99.2/98.6/94.6
Capsule 96.3/93.0/82.7 98.1/98.8/95.5 97.6/98.9/92.5 98.6/98.0/92.1 97.6/98.6/95.8 97.3/98.7/96.0
Hazelnut 100/99.6/98.5 100/98.7/93.9 99.7/97.3/81.3 99.9/97.2/86.7 100/98.9/95.4 100/99.0/96.2
Metal nut 98.8/99.0/97.0 100/98.4/91.3 100/98.7/88.4 98.4/91.9/75.9 100/97.3/92.4 100/98.3/93.0
Pill 98.0/97.9/88.4 96.6/97.4/94.1 98.6/98.4/93.4 98.9/96.3/84.6 95.9/98.2/96.3 98.7/98.5/97.2
Screw 99.6/99.7/95.0 98.1/99.4/97.9 98.4/99.3/96.7 99.6/98.2/94.0 97.7/99.6/98.0 99.0/99.6/98.5
Toothbrush 99.7/98.3/85.6 100/98.7/91.4 100/98.5/92.6 95.8/98.2/86.4 99.2/99.1/94.5 99.5/99.1/94.3
Transistor 94.0/85.5/70.4 100/96.3/83.5 100/96.8/93.7 98.1/94.7/77.5 96.0/92.9/78.6 98.2/94.1/83.0
Zipper 100/98.3/96.8 99.4/98.8/97.1 99.9/98.8/95.6 98.8/96.0/88.7 98.2/98.3/95.5 99.0/98.4/95.8

Average 98.0/96.9/91.3 99.1/98.1/93.5 99.5/97.4/90.6 98.8/95.1/85.5 98.5/97.8/93.9 99.3/98.3/95.1

TABLE II
PERFORMANCE COMPARISON ON THE VISA AND BTAD DATASETS. “I”,

“P” AND “O” REFER TO THE THREE METRICS OF I-AUROC, P-AUROC,
PRO, RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

VisA BTAD

I P O I P O

DRAEM [15] 88.7 94.6 73.1 89.0 87.1 61.6
PatchCore [4] 94.8 98.5 89.8 92.7 97.4 64.0
SimpleNet [6] 96.5 97.8 90.9 95.0 96.8 74.6
RealNet [25] 96.3 98.4 93.5 95.7 98.0 74.2
AST [24] 92.4 92.9 71.5 95.2 96.5 66.2
RD [10] 95.7 98.5 93.2 95.2 97.1 72.3
DTSNet 97.1 99.0 95.5 96.1 97.6 78.1

TABLE III
ABLATION STUDY ON DIFFERENT MODULES IN DTSNET.

Module Performance

Baseline Bottleneck APR I P O

� 98.1 97.3 93.6
� � 98.8 97.7 94.7
� � � 99.3 98.3 95.1

TABLE IV
ABLATION STUDY ON THE COMPONENTS OF THE FAS STRATEGY.

Performance

FAS
I P O

w/o Diversity 99.3 98.2 95.0
w/o Foreground 99.1 98.0 94.9

All 99.3 98.3 95.1

best method (i.e. SimpleNet). These results demonstrate the

effectiveness and generalization capability of the proposed

DTSNet across different datasets.

E. Ablation Studies

We conducted experiments to evaluate the impact of the

Bottleneck and the APR module on the model’s AD perfor-

mance, with the results presented in Table III. As shown in

TABLE V
ABLATION STUDY ON DIFFERENT BACKBONES.

Performance

Backbone
I P O

ResNet18 98.5 97.4 93.7
ResNet34 98.9 97.6 93.7
ResNet50 99.1 98.1 94.8

WideResNet50 99.3 98.3 95.1

TABLE VI
ABLATION STUDY ON FUSION OF SCORE MAPS AT DIFFERENT SCALES.

Score Map Performance

M1 M2 M3 I P O

� 92.8 94.6 89.8
� 98.5 97.1 93.6

� 97.7 97.4 91.0
� � 98.7 98.1 94.2

� � � 99.3 98.3 95.1

Table III, the reverse TS network with the FAS strategy was

used as the baseline model. The Bottleneck module improves

the student network’s capability to learn both low-level and

high-level features by integrating multiscale features into the

compact feature embeddings. Meanwhile, the APR module

further improves the network’s AD performance by effectively

transferring knowledge about important pixel regions in noisy

environments, thereby increasing the robustness of the stu-

dent’s feature representations.

We also examined the effectiveness of the FAS strategy, as

shown in Table IV. During training, we individually removed

the diversity mask generation and foreground extraction com-

ponents and compared these configurations with the complete

strategy. The results indicate that removing either component

led to a slight performance decline, highlighting the impor-

tance of both components in the overall strategy.

We further provided a qualitative comparison of various

backbone networks used us teacher models in Table V. The



results indicate that as the depth and width of the network

increase, the model’s ability to recognize anomalies gradually

improves, owing to the stronger representation capabilities of

deeper and wider networks. Notably, even with smaller net-

works such as ResNet18, our method is still able to maintain

competitive performance.

We also investigated the effectiveness of different network

layers in AD, as shown in Table VI. Among single-layer

features, M2 achieves the best performance by balancing local

texture and global structural information. However, due to the

randomness of anomaly locations, the single-layer features

alone are insufficient to effectively capture all anomalies. In

contrast, multiscale fusion proves beneficial by enabling the

identification of a wider range of anomalies.

IV. CONCLUSION

In this paper, we propose a denoising teacher student

network based on reverse distillation framework for anomaly

detection. Building on the reverse distillation paradigm, we

introduce an anomalous teacher network to guide the student

network in learning feature associated with anomalies, enhanc-

ing the representational disparity for anomalies and improving

detection performance. To enhance the representational capac-

ity of the student network, we develop an attention-guided

perturbation reconstruction module which directs the student

to focus on critical pixel regions. Extensive experiments

demonstrate that the proposed DTSNet achieves state-of-the-

art performance on the MVTec AD, VisA, and BTAD datasets,

surpassing existing methods in anomaly detection.
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