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Abstract— The removal of outliers is crucial for establishing 
correspondence between two images. However, when the propor-
tion of outliers reaches nearly 90%, the task becomes highly 
challenging. Existing methods face limitations in effectively uti-
lizing geometric transformation consistency (GTC) information 
and incorporating geometric semantic neighboring information. 
To address these challenges, we propose a Multi-Stage Geometric 
Semantic Attention (MSGSA) network. The MSGSA network 
consists of three key modules: the multi-branch (MB) module, 
the GTC module, and the geometric semantic attention (GSA) 
module. The MB module, structured with a multi-branch design, 
facilitates diverse and robust spatial transformations. The GTC 
module captures transformation consistency information from 
the preceding stage. The GSA module categorizes input based on 
the prior stage’s output, enabling efficient extraction of geomet-
ric semantic information through a graph-based representation 
and inter-category information interaction using Transformer. 
Extensive experiments on the YFCC100M and SUN3D datasets 
demonstrate that MSGSA outperforms current state-of-the-art 
methods in outlier removal and camera pose estimation, particu-
larly in scenarios with a high prevalence of outliers. Source code 
is available at https://shuyuanlin.github.io.

Index Terms— Correspondence learning, feature matching, 
outlier removal, camera pose estimation, deep learning.

I. INTRODUCTION

TWO view correspondence, also known as image match-
ing, is an essential task in computer vision [1], [2]. Its

purpose is to establish point-to-point correspondences between
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different images of the same scene. This task plays a crucial
role in various vision applications, including 3D reconstruc-
tion [3], [4], simultaneous localization and mapping [5], [6],
and image retrieval [7], [8], among others. The conventional
process of two-view correspondence involves three essential
steps: feature point extraction, matching, and outlier removal.
In this paper, our main focus is on outlier removal. The
sparsity and irregular distribution of feature points extracted
from images often result in a significant number of false cor-
respondences in the initial matches [9]. Therefore, removing
outliers is of paramount importance to ensure accurate image
matching.

Currently, two main factors contribute to the challenges
in outlier removal. Firstly, when the initial correspondence
contains a large number of outliers (e.g., 90%) distinguishing
inliers becomes a significant challenge. Secondly, the depiction
of the initial correspondence as coordinate combinations for
corresponding feature points hinders the extraction of mean-
ingful insights from the data. To address the first challenge,
previous methods have utilized iterative multi-stage networks
for gradual outlier removal. However, their effectiveness in
removing outliers is limited due to insufficient consideration
of inter-stage relationships. The preceding stage can provide
valuable priors for the subsequent stage, which should be taken
into account. Regarding the second challenge, considering
the characteristics of the initial correspondence set is crucial.
Firstly, the relationship between the coordinates of feature
points in each match is important, as correct matches satisfy
geometric constraints (e.g., epipolar constraints), while incor-
rect matches do not exhibit such constraints. Secondly, correct
matches demonstrate geometric transformation consistency
(GTC) under geometric transformations since they all satisfy
the same geometric constraints. Lastly, it is observed that
geometrically and semantically neighboring matching pairs
may not be adjacent in space, highlighting the importance of
incorporating neighbor information in deep learning. There-
fore, mining neighbor information, specifically geometric
semantic information, becomes highly necessary. In summary,
addressing these challenges requires leveraging inter-stage
relationships and capturing GTC and geometric semantic
information. However, existing methods have not adequately
addressed these aspects.
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Fig. 1. Overall architecture of the proposed MSGSA.

In the past decades, traditional outlier removal methods
such as RANSAC [10], VFC [11], PROSAC [12], NAP-
SAC [13] and some model fitting methods [14], [15], [16]
have demonstrated good performance in scenarios with a small
number of outliers. However, their performance significantly
deteriorates when the number of outliers exceeds a certain
threshold. In recent years, deep learning-based methods have
been proposed for outlier removal [17], [18], [19], [20],
[21], [22], [23]. These methods aim to transform the out-
lier removal problem into a binary classification or essential
matrix regression problem. These deep learning-based meth-
ods can be broadly categorized into two types: single-stage
network-based methods and multi-stage network-based meth-
ods. Single-stage network-based methods, such as LFGC [17]
and ACNe [18], have shown improvements in outlier removal
for scenarios with a high number of outliers compared
to traditional methods. However, their improvement is still
limited. On the other hand, multi-stage network-based meth-
ods, for example, OANet [19], T-Net [20], PESA-Net [21],
MSA-Net [24], and MS2DG-Net [25], have demonstrated
significantly better feature extraction capabilities and robust-
ness against outliers. However, the relationship between
different stages in multi-stage networks has not been fully
explored. For example, in a multi-stage network structure,
the information from the previous stage can be considered
as prior information for the next stage. If the next stage
can obtain more useful prior information from the previous
stage, then the difficulty of the task for the next stage will
be significantly reduced. These methods rely on concatenat-
ing the output of the previous stage with the input of the
next stage, which constrains their robustness in removing
outliers.

To leverage inter-stage relationships and extract geometric
transformation consistency (GTC) information and geometric
semantic information effectively, we propose a novel network
called Multi-Stage Geometric Semantic Attention (MSGSA).
As shown in Fig. 1, MSGSA consists of three key mod-
ules: the multi-branch (MB) module, the geometric semantic
attention (GSA) module, and the GTC module. The MB
consists of two types of MB networks, as illustrated in Fig. 2.
The first type, known as Multi-Branch with Squeeze-and-
Excitation (MBSE), combines the squeeze-and-excitation (SE)
module [26] with a local information extraction module. The
second type of MB network is referred to as Multi-Branch
with Multi-Scale (MBMS). It is composed of three paral-
lel branches: a global spatial transformation branch based
on global average pooling, a global spatial transformation
branch based on global max pooling, and a local spatial
transformation branch. The MB module combines global and
local spatial transformations along with channel refinement to
provide diverse and robust spatial transformations, enabling
effective discrimination between inliers and outliers. The GTC
module is positioned between two stages and takes advantage
of intermediate features from the previous stage. It extracts
geometric transformation consistency information from these
features and combines them with the input of the next stage.
The GSA module exploits geometric semantic neighboring
information using the probabilities of correct matching pairs
generated by the previous stage. It incorporates graph neural
networks [27] and transformer modules [28], [29] to aggregate
information within different semantic classes and facilitate
information interaction between classes.

In summary, the main contributions of our proposed method
can be summarized as follows:
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Fig. 2. Structure of the multi-branch module.

• We propose an MB module that enhances the discrimina-
tion between correct and incorrect matching pairs through
channel refinement and the combination of global and
local spatial transformations.

• We propose a GTC module that leverages geometric
transformation consistency information from the previous
stage to guide feature extraction in the subsequent stage,
thereby effectively mitigating the impact of outliers.

• We present a GSA module that effectively explores neigh-
boring information associated with semantic relation-
ships. This module not only enhances the performance
of outlier removal but also significantly improves the
accuracy of camera pose estimation.

The remaining sections of this paper are structured as
follows: In Section II, we provide a comprehensive overview
of the relevant literature on handcrafted methods, learning-
based methods, and attention mechanisms. Next, in Section III,
we present the specific details of our proposed method. Sub-
sequently, in Section IV, we provide the experimental results
we have obtained. Finally, we conclude the paper in Section V
by summarizing our findings.

II. RELATED WORK

In this section, we review the methods for removing outliers
based on handcrafted features, learning-based methods, and
attention mechanisms.

A. Handcrafted Methods

Outlier removal methods based on handcrafted features
can be divided into two groups: hypothesis-based and
validation-based resampling algorithms (e.g., RANSAC [10]
and its variants [12], [13], [30], [31], [32]) and non-parametric
model-based algorithms (e.g., VFC [11], MRCVF [33],
L2E [34], ICF [35]). RANSAC employs random sampling to
find the best model through multiple verifications. However,
random sampling often requires a large number of itera-
tions to achieve significant results. To address this issue,
PROSAC [12] enhances RANSAC by calculating the quality
score of matching pairs using an evaluation function, sorting
the pairs, and sampling from the progressively matching set
to reduce computational costs. NAPSAC [13] assumes that

correct matching pairs are closer to other correct matching
pairs in the set than to incorrect matching pairs. It achieves
this by projecting data onto an n-dimensional hypersphere and
gradually reducing the radius of hypotheses and samples to
eliminate matching pairs with outliers. USAC [31] introduces
a unified sampling framework that combines the strengths
of several RANSAC algorithms and their variants. However,
the effectiveness of resampling algorithms heavily relies on
the quality of initial matches and diminishes significantly
with an increasing number of mismatched pairs. On the
other hand, non-parametric model-based algorithms, such as
VFC [11] make assumptions about shared properties among
correct matching pairs and use consistency measures to remove
false matches. However, VFC performs worse than resampling
algorithms in scenarios involving image deformation. While
handcrafted-based outlier removal algorithms work well in
scenarios with a relatively small number of outliers, their
effectiveness significantly decreases when the proportion of
outliers is much larger than inliers. This limitation prompts
a shift in focus towards deep learning-based methods, which
have demonstrated robustness to outliers and align with the
method adopted in this paper.

B. Learning-Based Methods

To enhance the robustness to outliers, several deep
learning-based methods have been proposed. For example,
DSAC [36] mimics the iterative resampling behavior of
RANSAC using deep learning but fails to achieve signifi-
cant improvement in outlier removal performance. Conversely,
LFGC [17] introduces context normalization to capture global
information, neglecting local information between samples.
In response to this, ACNe [18] enhances context normalization
through an iterative least squares method and introduces
local attention. However, the localized attention mechanism
in ACNe focuses only on a single matching pair, which
is insufficient for capturing neighborhood information effec-
tively. It is important to note that these methods adopt a
single-stage network-based structure, which limits their fea-
ture extraction capabilities in scenes with a large number of
outliers. To address these constraints, contemporary method-
ologies have pivoted towards a multi-stage network-based
structure. For example, OANet [19] integrates global and
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local information effectively using an ordered “aggregation-
segmentation” strategy and a geometry-aware filtering module.
T-Net [20] utilizes a T-shaped structure to integrate output
features from each stage, enabling the extraction of mean-
ingful information. MSA-Net [24] incorporates a multi-scale
attention mechanism into a multi-stage network. MS2DG-
Net [25] utilizes a sparse semantic dynamic graph network
to extract sparse semantic information for matching pairs with
similar semantics. Furthermore, contemporary methodologies
such as CSR-Net [22] reframe the matching problem into a
holistic evaluation of dynamic local structure consensus in
an end-to-end fashion. Shape-Former [23] combines convo-
lutional neural network (CNN) and transformer capabilities
to enhance the representational prowess of structure consen-
sus. PGF-Net [37] proposes an iterative filtering structure
to progressively extract more reliable candidates from initial
correspondences. GCA-Net [38] introduces a graph context
attention mechanism to generate structure-aware graphs with
high resilience to outliers. SGA-Net [39] incorporates a graph
attention block to capture global and per-graph contextual
information from dynamic graphs. While these multi-stage
network-based structures improve the feature representation
ability of the network, they simply concatenate the output
of the previous stage with the input of the next stage, over-
looking geometric transformation consistency information and
failing to effectively extract and utilize semantic neighboring
information. These limitations restrict their effectiveness in
outlier removal. In contrast, the proposed method in this paper
takes into account both geometric transformation consistency
information and geometric semantic neighboring information.
Additionally, the MB module proposed in this paper provides
a more comprehensive and robust spatial transformation in
comparison to previous models. These advantages significantly
improve the effectiveness of outlier removal and the accuracy
of camera pose estimation.

C. Attention Mechanisms

Attention mechanisms [28], [40] are closely linked to
learning-based methods, specifically, the MSGSA method,
which integrates two attention mechanisms: (1) channel atten-
tion and (2) self-attention. Channel attention, a commonly used
technique in convolutional neural networks, enhances network
performance by evaluating the significance of each channel.
Notably, the SE-Net (Squeeze-and-Excitation Network) [26]
is a prevalent implementation of channel attention, learning
inter-channel relationships and assigning importance to each
channel. Variations such as the SK-Net (Selective Kernel
Network) [41] introduce dynamic selection mechanisms, while
MobileNetV3 [42] utilizes SE blocks and hard-swish acti-
vation functions for lightweight attention modules. ECA-Net
(Efficient Channel Attention Network) [43] replaces the fully
connected layer in the SE with an adaptive kernel size. In this
paper, we propose the MBSE and GTC modules leveraging
SE blocks to learn channel relationships.

Self-attention, on the other hand, computes the relationships
between each element and other elements in a sequence.
It allows for interactions between different elements, with

their importance determined through weighted calculations.
The Transformer [28], initially introduced for natural language
processing, has been successfully applied to image process-
ing tasks as well, as seen in the Vision Transformer (ViT)
[29]. The Transformer is powerful in capturing global infor-
mation, but computationally expensive for long sequences.
To address this, we proposed the GSA module, which employs
classification aggregation for matching pairs and leverages
the Transformer for information exchange between category
nodes.

III. METHODS

This study addresses the problem of two-view correspon-
dence learning, focusing on outlier removal and camera pose
estimation. In this section, we present the framework designed
to achieve these objectives.

A. Problem Formulation

For a pair of images, denoted as I1 and I2, obtained from the
same scene, their features are represented by feature points.
Initially, either a traditional algorithm [44], [45], [46], [47]
or a deep learning-based algorithm [35], [48] is used to
acquire a set of feature point coordinates for the images,
along with their corresponding descriptors. Subsequently, ini-
tial matching pairs between the images are generated using the
nearest neighbor algorithm. Mathematically, the normalized
coordinates of these matching pairs can be represented as
S = [s1, s2, s3, . . . , sN ] ∈ RN×4, where N is the number
of matching pairs, and si = (xi , yi , x ′

i , y′

i ) represents the
normalized coordinates of a matching pair. Here, (xi , yi )

corresponds to the normalized coordinates of a feature point in
the i-th matching pair in the image I1, and (x ′

i , y′

i ) corresponds
to the normalized coordinates of the corresponding feature
point in the i-th matching pair in image I2.

In the context of two-view correspondence learning, our
objective is to address two tasks: outlier removal and camera
pose estimation. To address these tasks, as suggested by [17],
we break down the problem into two subproblems: (1) binary
classification of matching pairs and (2) essential matrix regres-
sion for camera pose estimation. We propose the application of
a neural network to handle the binary classification problem.
The neural network predicts the probability of correctness
for each matching pair, and these probabilities are utilized
to calculate weights for each pair. For the essential matrix
regression problem, we combine these weights with the eight-
point algorithm [49] to compute the essential matrix E , defined
as follows:

E = g(S, tanh(ReLU ( fϕ(S)))), (1)

where fϕ represents the proposed neural network framework
(MSGSA) and ϕ denotes the parameter of MSGSA; g repre-
sents the improved eight-point weighting algorithm; tanh and
ReLU are activation functions.

B. Multi-Branch Module

To effectively leverage the geometric characteristics embed-
ded in the initial correspondence set data, we introduce the
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MB module. This module is designed to offer comprehensive
and robust spatial transformations by incorporating channel
refinement in the channel dimension and a combination of
global and local spatial transformations in multiple dimen-
sions. As depicted in Fig. 2, the MB module comprises two
distinct types of MB networks: 1) MBSE and 2) MBMS. The
input data undergoes a primary transformation via the MBSE
module, followed by a secondary transformation through the
MBMS module, and ultimately experiences a tertiary transfor-
mation through the MBSE module.

1) Multi-Branch With Squeeze-and-Excitation: The MBSE
module encompasses two branches: (i) the channel refinement
branch and (ii) the local spatial transformation branch. The
output features from these branches are combined through an
addition operation and are concurrently linked to the input
features via a residual connection.

(i) Channel refinement. The channel refinement branch
employs the SE module to learn and assign weights to
inter-channel dependencies and individual channel features,
thereby refining the features in the channel dimension. The
input features undergo two Convolution + GELU + Batch
Normalization + Context Normalization (CGBC) layers,
denoted as Fb(a) = Conv(G E LU (B N (C N (a)))), where a
represents the input of CGBC. Following this, the SE module
is applied to enhance channel refinement. The SE module can
be mathematically defined as follows [26]:

v = Fsq(u) =
1

N × 1

N∑
i=1

1∑
j=1

u(i, j), (2)

h = Fex (v) = σ(W2δ(W1v)), (3)

where u ∈ RN×1×C represents the input of SE module; N is
the number of matching pairs; C is the number of channels for
each matching pair; and v ∈ R1×1×C represents the output of
the squeeze operation Fsq . The excitation operation is denoted
by Fex , which consists of two linear layers represented by
W1 ∈ R

C
r ×C and W2 ∈ RC×

C
r , where r is the channel reduc-

tion ratio. The sigmoid function σ and the ReLU activation
function δ are applied during the excitation operation. The
excitation operation yields the channel weight parameter h,
which is multiplied element-wise with the input feature u to
achieve channel refinement.

(ii) Local spatial transformation branch. This branch
captures detailed local information to provide spatial trans-
formations across different dimensions. It applies CGBC
operations exclusively to the input features.

2) Multi-Branch With Multi-Scale: The MBMS module
consists of three branches: the global spatial transformation
branch based on global max pooling, the global spatial trans-
formation branch based on global average pooling, and the
local spatial transformation branch. Global average pooling
is effective in aggregating global information, but it is not
robust to outliers. To address this, we introduce global max
pooling to emphasize high response values and compensate for
the limitations of global average pooling. The output features
of these three branches are combined through an addition

operation. The formulation can be described as follows:

q = Fb(G AP(e)) + Fb(G M P(e)) + Fb(e), (4)

where Fb(·) represents the CBGC layer; G AP(·) represents
global average pooling; G M P(·) represents global max pool-
ing; and e represents the input of MBMS. The final step
involves merging the output feature q with the input feature
of MBMS through a multiplication operation.

C. Geometric Transformation Consistency Module

The GTC module is designed to capture the influence of
geometric constraints, such as epipolar constraints, on correct
match pairs. The transformation process of these pairs exhibits
GTC under spatial transformations. To effectively extract this
information, the GTC module operates in two stages, cap-
turing intermediate transformation process information before
and after spatial transformations in the previous stage. The
obtained transformation process information is then fused into
the input of the next stage.

Initially, the matching set space has a dimensionality of 4,
and to enhance the feature capacity, a 1 × 1 convolution
operation is applied, increasing it to 128 dimensions. Sub-
sequently, using the MB module, we obtain the features in the
feature space Z1. Through a series of spatial transformations
(PointCN×2, OA module, PointCN×2, and MB module)
denoted as Ftr , these features are further transformed from
Z1 to the feature space Z2, represented as Ftr : Z1 → Z2.
The GTC module incorporates a basic SE module, and its
operation process can be described as follows:

f l
c = SE(concat ( f l

Z1
, f l

Z2
)), (5)

f l+1
= concat ( f l

c , f l+1
in ), (6)

where, f l
Z1

represents the features of the feature space Z1;
f l
Z2

represents the features of the feature space Z2; and
l ∈ [1, 2] denotes the stage. The concat operation refers to
concatenation along the channel dimension. Furthermore, f l

c
represents the extracted GTC information; f l+1

in represents the
input for the following stage; and f l+1 represents the fused
features that incorporate the GTC information.

D. Geometric Semantic Attention Module

To effectively capture semantically adjacent neighbor infor-
mation, we propose the GSA module, depicted in Fig. 3. This
module operates during the second and third stages of the
model and consists of five steps: (a) neighbor selection, (b)
category graph construction, (c) neighbor feature aggregation,
(d) category information interaction, and (e) feature fusion.

(a) Neighbor selection: Probability maps obtained from the
final output of each stage guide the selection of neighbors.
These maps indicate that the probabilities between geomet-
rically and semantically adjacent matching pairs are close.
Utilizing these probability values, we partition the input
matching pairs of the next stage into k classes, where each
class consists of mutually adjacent pairs.

(b) Category graph construction: For each class, we con-
struct a category graph Gi = (Hi , Di j ) by creating a category
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Fig. 3. Structure of the geometric semantic attention module.

node connected to its corresponding matching pairs. Here, Gi
represents the category graph for the i-th class, Hi represents
the category node of the i-th class, and Di j represents the edge
between category node i and matching pair j . The category
nodes act as intermediaries for information exchange among
the matching pairs in the same class. Each category graph
(Gi ) represents a set of matching pairs that share similar
characteristics, with the nodes within each category graph
being neighbors to one another. By grouping, refining, and
aggregating matching pair nodes based on different features,
the model acquires a more nuanced comprehension of the
intrinsic architecture of the data.

(c) Neighbor feature aggregation: We obtain the initial
feature of each category node by fusing the features of all
matching pairs within that category. This fusion is accom-
plished through average pooling, which can be seen as a
one-hop convolution in graph neural networks(GCN).

(d) Category information interaction: To further leverage the
information from different categories, we apply transformer-
based attention to all category nodes. The attention process
can be mathematically defined as follows:

AT Ti j (Qi , K j , V j ) = so f tmax(
Qi KT

j
√

d
)V j , (7)

fHi =

k∑
j=1

AT Ti j (Qi , K j , V j ), (8)

where AT Ti j represents the attention of the i-th category node
to the j-th category node; Qi represents the query vector of the
i-th category node, while K j represents the key vector of the
j-th category node; d represents the temperature coefficient;
and V j represents the value vector of the j-th category node.
The output fHi represents the result of the i-th category node
after being attended to by all category nodes. Finally, we refine
the channel information of each category node using the SE
module.

(e) Feature fusion: Following the aforementioned steps, each
category node collects information from neighboring matching

pairs and integrates global information. Then, we fuse the fea-
tures of each category node with the features of all matching
pairs in the corresponding category. This process enables each
matching pair to possess both neighbor information and global
information.

E. Loss Function

To formulate two-view correspondence learning as a multi-
task problem, encompassing binary classification and essential
matrix regression, we introduce a hybrid loss function that
integrates both classification and regression losses. The hybrid
loss function is defined as follows [50] and [51]:

Loss = lc(W, L) + γ le(Ê, E), (9)

where lc represents the loss function for the dichotomous
classification problem with cross-entropy loss and le represents
the loss function for the essential matrix regression problem;
γ is a hyperparameter that balances the two loss functions.
The hyperparameter γ is set to 0.5, following the previous
works [19], [20], [38]. The le is specified as follows:

le(Ê, E) =
(p′T Ê p)2

∥Ep∥
2
[1]

+ ∥Ep∥
2
[2]

+ ∥Ep′∥
2
[1]

+ ∥Ep′∥
2
[2]

,

(10)

where p and p′ are sets of correspondences of matching pairs;
E and Ê represent the predicted essential matrix and ground
truth essential matrix, respectively; and ∥ · ∥[i] denotes the
element at the i-th position in the vector.

IV. EXPERIMENTS

A. Implementation Details

As shown in Fig. 1, the input data comprises N (approxi-
mately 2000) initial matching pairs, where each pair contains
4 channels. In the first stage, the initial matching pairs undergo
a dimensional expansion operation through a 1×1 convolution,
resulting in a transformation into a 128-dimensional space.
Subsequently, they are sequentially processed through the
MB module, PointCN×2, OA module, PointCN×2, and MB
module. The PointCN and OA modules are adopted from
OANet. The second and third stages of the network differ from
the first stage in that they incorporate geometric transformation
consistency information extracted from the previous stage,
following the expansion of the input to 128 dimensions.
This integrated information is then processed using the GSA
module. Finally, the output features of the three stages are
fused using two MBSE modules for feature integration. The
network is implemented using PyTorch, with a batch size of
32. The network parameters are optimized using the Adam
optimizer with a learning rate of 10−3. Following an iterative
network method [19], the network undergoes training for
500k iterations. All experiments are conducted on NVIDIA
GTX 3090 GPUs.
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B. Datasets

To evaluate our method, we used two datasets: the
YFCC100M dataset [52]) for indoor scenes, and the SUN3D
dataset [53]) for outdoor scenes.

The YFCC100M dataset, introduced in the work [52], is a
comprehensive collection of online media objects. It comprises
a vast number of images and videos, including approxi-
mately 99.2 million images and 800,000 videos. We utilized
a subset of this dataset consisting of 72 different indoor
scene sequences, which were classified into various cate-
gories. During our experiments, we considered 68 of these
scene sequences as known scenes, while the remaining four
sequences were treated as unknown scenes. We divided the
known scene sequences into training, validation, and testing
sets, with proportions of 60%, 20%, and 20%, respectively.
The training set was used to train our model, and the testing
set, composed of the four unknown scene sequences, was used
to evaluate the generalization performance of our method.

The SUN3D dataset, introduced in the work [53], is a large-
scale RGB-D video database primarily focusing on outdoor
scenes. The dataset we used in this study comprises a diverse
collection of scene sequences captured using RGB-D sen-
sors. Specifically, the dataset includes 253 scene sequences,
of which we selected 239 sequences as known scenes for our
experiments. Similar to the YFCC100M dataset, we divided
the known scene sequences into training, validation, and test-
ing sets, with proportions of 60%, 20%, and 20%, respectively.
We evaluated the generalization capacity of our method using a
testing set consisting of four sequences representing unknown
scenes.

C. Evaluation Metrics

Our method is evaluated on two dimensions: outlier removal
and camera pose estimation. Therefore, we employ different
evaluation metrics to assess the performance in each aspect.
For outlier removal, we use Precision (P), Recall (R), and
F-score (F) as evaluation metrics; for camera pose estimation,
we use the average accuracy (mAP) calculated under the error
thresholds of 5◦ and 20◦ as evaluation metrics.

D. Outlier Removal

As shown in Table I, we conducted a comparison
between our method MSGSA and 12 alternative meth-
ods: RANSAC [10], PointNet++ [54], LFGC-Net [17],
DEF-Net [50], ACNe-Net [18], OANet [19], T-Net [20],
PESA-Net [21], MSA-Net [24], MS2DG-Net [25], GCA-
Net [38], and PGF-Net [37]. Among them, RANSAC,
PointNet++, LFGC-Net, DEF-Net, and ACNe-Net are ear-
lier methods, and their experimental data are adopted from
T-Net. For the remaining methods, the experimental results
are obtained by running the authors’ code on the same local
server and the same random image pairs. It can be observed
that the deep learning-based methods (i.e., PointNet++,
LFGC-Net, DEF-Net, ACNe-Net, OANet, T-Net, PESA-Net,
MSA-Net, MS2DG-Net, GCA-Net and PGF-Net) outper-
form the handcrafted-based method RANSAC in terms of
precision, recall, and F-score. Notably, deep learning-based

methods generally achieve a recall metric over 30% higher
than RANSAC. The low recall metric of RANSAC can be
attributed to the fact that, in scenarios where the number
of outliers (nearly 90%) is significantly higher than the
number of inliers, RANSAC tends to remove more inliers
when selecting the model. Deep learning-based methods,
with their stronger feature representation capabilities, effec-
tively learn the characteristics of matching pairs and can
better differentiate between correct and incorrect matches.
For the known scene of the YFCC100M dataset, MSGSA
outperforms RANSAC by 16.13%, 38.65% and 25.33% in
the P, R, and F metrics, respectively. Furthermore, MSGSA
significantly outperforms other deep learning-based methods.
For instance, compared with the representative state-of-the-art
method GCA-Net, in the known scene, MSGSA has improved
by 0.60% and 0.26%, respectively, in the P and F metrics.
In the unknown scene, MSGSA has improved by 0.66%
and 0.32%, respectively, in the P and F metrics. For the
SUN3D dataset, the performance of MSGSA is slightly lower
than the first-ranked methods in the three metrics (i.e., P, R
and F). This is because the SUN3D scenes are relatively blurry,
lack texture, and contain numerous similar structures, making
outlier removal more difficult in such challenging scenarios.
Fig. 4 visualizes the outlier removal performance of MSGSA
on the YFCC100M dataset, demonstrating MSGSA’s stronger
capability compared to current methods.

To examine the contributions of different modules at each
stage, we employed Principal Component Analysis (PCA) to
reduce the dimensionality of multiple intermediate features in
the three stages and visualized them, as shown in Fig. 5. It can
be observed that the initial matching pairs contain a mixture
of inliers and outliers. After undergoing processing by the 1×

1 convolutional layer, the inliers start to form distinct clusters.
After each stage of the MB module, the separation between
inliers and outliers becomes more pronounced. Successive
stages of the MB module accentuate the distinction between
inliers and outliers, particularly in the last two stages, where
they are distinctly separated and clustered.

E. Camera Pose Estimation

As shown in Table II, we conducted a comparison between
our proposed MSGSA and 12 other methods in the camera
pose estimation task. We additionally compared SGA-Net [39],
which uses an improved eight-point algorithm (including
a modified weight calculation strategy and an additional
dynamic weight loss function) to compute the essential matrix.
It is evident that the handcrafted-based RANSAC algorithm
performs significantly worse compared to deep learning-based
methods. This is not only due to its lower accuracy in outlier
removal but also because RANSAC retains fewer inliers (lower
recall) after outlier removal. In contrast, deep learning-based
methods achieve notably better results in the camera pose
estimation task, primarily due to their higher recall when
compared to RANSAC.

The proposed MSGSA method demonstrates superior per-
formance on both the YFCC100M and SUN3D datasets,
surpassing the other 13 competing methods. For example, for
the YFCC100M dataset, MSGSA outperforms RANSAC by
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TABLE I
COMPARISON OF OUTLIER REMOVAL RESULTS ON THE YFCC100M AND SUN3D DATASETS. THE OPTIMAL INDICATOR

VALUES ARE IN BOLD, AND THE SECOND-BEST INDICATORS ARE UNDERLINED

Fig. 4. Some visualization results of the proposed MSGSA on the YFCC100M dataset. (a) Milan Cathedral, (b) Paris Opera, (c) Palazzo Pubblico,
(d) Florence Cathedral Dome I nterior , and (e) Palace of V ersailles Chapel. The first to sixth rows are the input image pairs and the visualization
results obtained by OANet, T-Net, PESA-Net, MS2DG-Net, and our proposed MSGSA, respectively.

40.2% and 51.00% in the known scenes, and by 48.88% and
56.07% in the unknown scenes, under error thresholds of 5◦

and 20◦, respectively. For the SUN3D dataset, MSGSA out-
performs RANSAC by 22.04% and 38.88% in known scenes,

and by 18.16% and 36.20% in unknown scenes, under error
thresholds of 5◦ and 20◦, respectively. Compared with cur-
rent state-of-the-art methods, MSGSA also shows significant
improvements. For the YFCC100M dataset, compared with
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Fig. 5. Some visualization results of the proposed MSGSA. From top to bottom, three rows represent three stages of MSGSA, respectively. (a) The initial
feature of the matching pairs, (b) the features after being dimensionally increased through a 1 × 1 convolution, (c) the features after passing through the first
multi-branch module, and (d) the features after passing through the second multi-branch module.

TABLE II
PERFORMANCE COMPARISON OF CAMERA POSE ESTIMATION ON THE YFCC100M AND SUN3D DATASETS USING ERROR THRESHOLDS OF 5◦ AND

20◦ . THE OPTIMAL INDICATOR VALUES ARE IN BOLD, AND THE SECOND-BEST INDICATORS ARE UNDERLINED

the representative state-of-the-art method GCA-Net, MSGSA
shows improvements of 2.12% in the known scenes and
2.86% in the unknown scenes, under the error threshold
of 5◦. For the SUN3D dataset, compared with the represen-
tative state-of-the-art method PGF-Net, MSGSA showcases
improvements of 2.50% and 2.90% in known scenes and
3.56% and 7.37% in unknown scenes, under the error thresh-
olds of 5◦ and 20◦, respectively. Following modifications to

the loss function and eight-point weighting algorithm, SGA-
Net experienced a substantial performance boost. In order to
ensure a fair comparison, we applied identical modifications
to MSGSA. On the YFCC100M dataset, MSGSA demon-
strated noteworthy performance enhancements compared to
SGA-Net in known scenes, registering increases of 11.5% and
9.29% at 5◦ and 20◦ thresholds, respectively. In unknown
scenes, MSGSA exhibited improvements of 6.25% and
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TABLE III

STATISTICAL ANALYSIS OF REPRESENTATIVE METHODS FOR OUTLIER REMOVAL METRICS ON THE YFCC100M DATASETS. µ AND σ 2 INDICATE THE
MEAN AND VARIANCE, RESPECTIVELY. THE OPTIMAL INDICATOR VALUES ARE IN BOLD

TABLE IV

STATISTICAL ANALYSIS OF REPRESENTATIVE METHODS FOR CAMERA POSE ESTIMATION METRICS ON THE YFCC100M DATASETS. µ AND σ 2 INDICATE
THE MEAN AND VARIANCE, RESPECTIVELY. THE OPTIMAL INDICATOR VALUES ARE IN BOLD

3.66% at 5◦ and 20◦ thresholds, respectively, compared to
SGA-Net.

While MSGSA may not surpass all current state-of-the-art
methods in every metric for outlier removal on the SUN3D
dataset, its standout performance in the camera pose estima-
tion task is significant. This underscores a crucial insight:
the accuracy of camera pose estimation relies not only on
the precision and recall of outlier removal but also on the
quality of the match set obtained post-outlier removal. Notably,
our proposed method consistently generates a higher-quality
match set, contributing to enhanced accuracy in camera pose
estimation.

F. Statistical Difference Analysis

To comprehensively evaluate the statistical differences
between the current state-of-the-art technologies, several rep-
resentative existing techniques, including T-Net, MS2DG-Net,
GCA-Net and the proposed MSGSA, were selected for
independent experiments on the YFCC100M dataset. These
methods were retrained five times on the same training
set, and then the means and variances of various evalua-
tion metrics obtained by each method on the testing set
were reported for statistical analysis. From the perspective of
mean difference analysis, the experimental results presented
in Tables III and IV show that, compared to all other three
methods, the proposed MSGSA obtains the best means in
terms of the P and F metrics for the outlier removal task in
both known and unknown scenes. Furthermore, MSGSA also
obtains the best means under the error thresholds of 5◦ and
20◦ for the camera pose estimation task in the known scene.
In contrast, MSGSA is only slightly lower than GCA-Net in

terms of the R metric for the outlier removal task across
both scenes, and under the error threshold of 20◦ for the
camera pose estimation task in the known scene. From the
perspective of variance analysis, as shown in Tables III and IV,
the variance of the R metric obtained by MSGSA is only
slightly higher than those of MS2DG-Net and GCA-Net for
the outlier removal task in the known scene. Meanwhile, the
variance under the error thresholds of 5◦ and 20◦ obtained
by MSGSA is slightly higher than that of T-Net for the
camera pose estimation task in the known scene. However,
MSGSA still achieves the best variances in 7 out of a total
of 10. Overall, MSGSA exhibits lower variance than some
other methods, indicating its higher stability and reliability.
Regarding the issue of stability, we attribute the primary
reasons to the randomness of parameter initialization and
the balance between outlier removal loss and camera pose
estimation loss. In future work, we plan to conduct a more
in-depth study on stability.

G. Downstream Applications

To demonstrate the versatility of our method, we con-
ducted experiments across diverse downstream tasks, including
remote sensing image registration, 3D point cloud registration,
and 3D fusion. For the remote sensing image registration,
we compared MSGSA against OANet, T-Net, MS2DG-Net on
a remote sensing dataset [55]. We showcased the qualitative
results on several representative scenes in Fig. 6. From the
experimental results, it can be observed that some methods
do not perform well in scenes with significant viewpoint
changes. For instance, OANet had poor registration results in
scenes Figs. 6 (a) and (b), while T-Net showed unsatisfactory
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Fig. 6. These visualizations demonstrate remote sensing image registration. The initial row displays pairs of images for alignment, with the left as the source
and the right as the target. Subsequent rows show results from the registration methods: OANet, T-Net, MS2DG-Net, and our MSGSA network. Each column
exhibits a checkerboard image on the left and the warped sensed image on the right.

performance in scene Fig. 6 (d). On the other hand, both
MS2DG-Net and our MSGSA method demonstrated better
registration performance in these scenes. Furthermore, upon
closer inspection, MSGSA outperformed MS2DG-Net in terms
of capturing finer details, highlighting its superior generaliza-
tion ability.

To assess the generalization ability of our method in
3D scenes, we conducted experiments on the 3DMatch
dataset [56]. Using the PointDSC framework [57], we trained
our model on the 3DMatch training set and validated it on
the test set. The test set included 1623 pairs of partially
overlapping point cloud fragments from eight scenes, each
labeled with ground truth. As shown in Fig. 7, by employing
our method, the majority of misaligned points (near 97%)
were effectively eliminated. Visualization of selected scenes
demonstrated the effectiveness of our method, successfully
eliminating misaligned points and achieving highly satisfac-
tory 3D fusion. This capability allows seamless integration
of point cloud fragments, contributing to generating more
complete and accurate 3D scenes.

H. Ablation Experiments

MSGSA consists of three main components: the MB back-
bone network, the GTC module, and the GSA module. The
MB backbone network provides rich and robust spatial trans-
formations, while the GTC module helps suppress the effects

of outliers. Lastly, the GSA module improves the quality of the
matched set after outlier removal. To assess the effectiveness
of each component, we conducted ablation experiments on
both the YFCC100M and SUN3D datasets. In Table V, it is
evident that even when solely employing the MB module
without the GTC and GSA modules, MSGSA outperforms the
majority of existing methods. The introduction of the GTC
module yields a significant performance improvement, further
enhanced by the GSA module. However, the impact of the
GSA module is relatively less pronounced on the YFCC100M
dataset. To provide a clearer demonstration of the effectiveness
of the GSA module, we conducted ablative experiments on
the SUN3D dataset. As shown in Table VI, the GSA module
achieved a performance improvement of 2.02% and 1.45%
in the known and unknown scenarios, respectively, with an
error threshold of 5◦. These experiments provide compelling
evidence that all three modules in MSGSA effectively enhance
its performance.

1) The Impact of Local Spatial Transformation Branch
in MBSE: To assess the effectiveness of the local spatial
transformation branch in MBSE, we conducted experiments
where this branch was removed. The results, as shown in
Table VII and Table VIII, demonstrate that using the local
spatial transformation branch improves the performance of
both the outlier removal task and the camera pose estimation
task, compared to not using it. The improvement is particularly
prominent in the camera pose estimation task. Especially,
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Fig. 7. Visualization of 3D point cloud registration and fusion. From top
to bottom, the images depict the initial matching, outlier removal, and 3D
fusion.

TABLE V
RESULTS FROM ABLATION EXPERIMENTS ON THE THREE PROPOSED

MODULES ON THE YFCC100M DATASET. MB: MULTI-BRANCH
MODULE. GTC: GEOMETRIC TRANSFORMATION CONSISTENCY
MODULE. GSA: GEOMETRIC SEMANTIC ATTENTION MODULE

in the camera pose estimation task with an error threshold
of 5◦, the MSGSA with MBSE’s local spatial transformation
branch exhibited a performance improvement of 1.62% in
known scenes and 2.60% in unknown scenes compared to the
MSGSA without this branch. This improvement is attributed
to the recognition that the geometric properties of the initial
matching data manifest not only in the matching pair channels
but also in the relationships between the matching pairs.
Relying solely on the channel refinement branch is insufficient
to capture the geometric relationships between matching pairs.
With the inclusion of the local spatial transformation branch,
the MBSE module effectively captures information in both the
channel and spatial dimensions, enabling a more comprehen-
sive transformation.

2) Global Max Pooling and Global Average Pooling: To
evaluate the impact of global average pooling and global
max pooling in the MBMS module, we conducted three
ablation experiments. In the first experiment, we employed
only global average pooling, while the second experiment
utilized only global max pooling. The third experiment

TABLE VI
THE GEOMETRIC SEMANTIC ATTENTION MODULE SHOWED MORE

SIGNIFICANT IMPROVEMENT ON THE SUN3D DATASET

TABLE VII
RESULT OF OUTLIER REMOVAL WITH AND WITHOUT LOCAL SPATIAL

TRANSFORMATION BRANCH IN MBSE. MSGSA∗ : WITHOUT
LOCAL SPATIAL TRANSFORMATION BRANCH

TABLE VIII
RESULT OF CAMERA POSE ESTIMATION WITH AND WITHOUT LOCAL
SPATIAL TRANSFORMATION BRANCH IN MBSE. MSGSA∗ : WITHOUT

LOCAL SPATIAL TRANSFORMATION BRANCH

Fig. 8. The impact of global average pooling (GAP) and global max pooling
(GMP) in camera pose estimation.

combined both global average pooling and global max pooling.
Fig. 8 illustrates the camera pose estimation accuracy for
the three experiments at the error thresholds of 5◦, 10◦,
15◦, and 20◦. The results demonstrate that the combination
of global average pooling and global max pooling achieved
the best performance, followed by using only global max
pooling while using only global average pooling resulted in the
lowest performance. The reason behind these observations is
as follows: Global average pooling captures global information
without losing valuable details, but it is less robust to outliers.
In scenarios where outliers significantly outnumber inliers,
using only global average pooling can weaken the influence
of inliers, as their information is overshadowed by that of
outliers. On the other hand, global max pooling emphasizes
high response values, effectively extracting inlier information.
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Fig. 9. Results of camera pose estimation under different k-values.

However, it may suffer from information loss. Considering
the strengths and weaknesses of global max pooling and
global average pooling, it is evident that these two pooling
techniques complement each other in practice. Therefore,
in the third experiment, we combined both global average
pooling and global max pooling to leverage the advantages
of both methods, resulting in optimal performance.

3) The Value of k in GSA: The parameter “k” in the GSA
module represents the number of category nodes, and it plays
a crucial role in determining the semantic division. A larger
value of “k” leads to a finer semantic division, allowing for
more precise extraction of semantic neighbor information.
However, excessively large values of “k” can result in missing
semantic neighbors, which leads to inadequate extraction of
neighbor information. On the other hand, a smaller “k” value
can result in a broader semantic scope, which can affect the
extraction of semantic neighbor information. To determine an
appropriate “k” value, we conducted ablation experiments on
the YFCC100M dataset, evaluating different values of “k”.
Fig. 9 illustrates the camera pose estimation accuracy at the
error thresholds of 5◦, 10◦, 15◦, and 20◦ for “k” values of 5,
10, and 12. The results indicate that neither a larger “k” value
nor a smaller “k” value necessarily leads to better performance.
Instead, a value of 10 emerges as a relatively balanced choice,
optimizing the precision of semantic division and neighbor
information extraction.

4) The Impact of Outlier Rates: To evaluate the effective-
ness of various methods in eliminating mismatched points
across different outlier rates, we conducted ablation exper-
iments with selected methods, including OANet, T-Net,
MS2DG-Net, RANSAC, and our proposed method. OANet,
T-Net, MS2DG-Net, and our method are deep learning-based,
while RANSAC is a traditional method. Fig. 10 presents the
experimental results. Under low outlier rates, all methods
achieved a mismatch removal accuracy of over 90%. The
deep learning-based methods showed consistent performance,
with marginal differences compared to RANSAC, the tradi-
tional method. However, as the outlier rate increased, our
method’s effectiveness in removing mismatches gradually sur-
passed the other methods, indicating superior robustness to
outliers. A notable observation is the significant degradation
in the performance of the traditional method as the outlier
rate increased, emphasizing the superior robustness of deep
learning-based methods in handling higher outlier rates.

Fig. 10. The impact of various outlier rates on outlier removal.

TABLE IX
CAMERA POSE ESTIMATION RESULTS FOR NETWORKS WITH AND

WITHOUT THE GTC MODULE (“a ” REPRESENTS USING
THE GTC MODULE)

5) Transferability of GTC: To evaluate the adaptability of
the GTC module to other models, we integrated the GTC
module into the OANet, T-Net, and MS2DG-Net models
individually and compared their performance with the original
models. The results, presented in Table IX, demonstrate a
significant enhancement in the camera pose estimation task
upon incorporating the GTC module. The GTC module has
demonstrated outstanding performance across various mod-
els, mainly due to its two core strengths: Firstly, the GTC
module successfully extracts crucial geometric transformation
consistency information by using the feature information of
matching pairs during the transformation process. This not
only reveals the common geometric constraints followed by
correct matching pairs, but also provides a strong support for
distinguishing correct and incorrect matches. Secondly, the
GTC module significantly enhances the information transfer
and interdependence between different stages of the network,
thereby significantly improving the overall performance of
the model. By incorporating the prior knowledge from the
previous stage as input for subsequent stages, the accumulation
and optimization of information are achieved, leading to a
more efficient learning process within the multi-stage network
architecture.

6) Transferability of GSA: To assess the applicability of the
GSA module to other models, we integrated the GSA module
into the OANet model and compared its performance to the
original OANet model. The results, As shown in Tables X
and XI, demonstrated a significant improvement in both the
outlier removal and camera pose estimation tasks when the
GSA module was incorporated. Especially, in the camera pose
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TABLE X
OUTLIER REMOVAL RESULTS FOR NETWORKS WITH AND WITHOUT THE

GSA MODULE (“*” REPRESENTS USING THE GSA MODULE)

TABLE XI
CAMERA POSE ESTIMATION RESULTS FOR NETWORKS WITH

AND WITHOUT THE GSA MODULE (“*” REPRESENTS
USING THE GSA MODULE)

estimation task with an error threshold of 5◦, the OANet with
the inserted GSA module exhibited a performance improve-
ment of 2.56% in known scenes and 3.42% in unknown scenes
compared to the original OANet. This improvement can be
attributed to the GSA module’s ability to leverage geometric
semantic neighbor information, highlighting the importance of
such information in achieving superior performance.

To provide a clearer visualization of the impact of the
GSA module, we conducted experiments on image pairs with
a substantial presence of similar semantics and compared
the performance of the original OANet and OANet with the
GSA module. As depicted in Fig. 11, we observed that
the original OANet, without the GSA module, struggled to
discriminate between inliers and outliers in such scenarios.
In contrast, the OANet model enhanced with the GSA module
exhibited significant performance improvement, successfully
distinguishing between inliers and outliers. Moreover, the
visualized performance of MSGSA in these scenarios was
even more impressive, highlighting the synergistic effect of
the various modules within MSGSA, which provide a robust
foundation for capturing semantic neighbor information.

I. Limitations

Our method exhibits limitations, particularly in scenarios
represented by the SUN3D dataset, where it struggles to effec-
tively remove false matches. Analysis of the SUN3D dataset
and visualization of results have revealed specific conditions
leading to suboptimal performance. These conditions include
low lighting, extensive featureless surfaces like plain walls or
floors, and image artifacts induced by camera shake. With an
anomaly rate exceeding 95% in such scenes, we visualized
two representative instances in Fig. 12, featuring outlier rates
of 98.3% and 95.85%, respectively. Notably, existing methods
also face challenges in these scenarios.

To address these limitations, we identify the need for
enhancements in the feature point extraction algorithm. Tradi-
tional algorithms heavily depend on local texture information,

Fig. 11. In scenes with a large number of semantically similar features,
OANet loses its ability to distinguish these similar matches. By incorporating
our GSA module (OANet*), OANet achieves a significant improvement in its
ability to discriminate among these semantically similar matches.

Fig. 12. Outlier removal effect in scenes with low light, large areas of solid
color walls or floors, and presence of ghosting.

posing challenges in accurately extracting key points in scenes
with limited texture, such as those with low lighting and large
featureless surfaces. We propose that improving the feature
point extraction algorithm is pivotal. This enhancement could
involve incorporating additional visual information, such as
depth and color, to bolster adaptability in specific challenging
scenarios. Depth information can aid in feature point extraction
by analyzing the depth map to identify geometric structures,
while color information can augment extraction by leveraging
color variations for diversity and robustness.

An alternative method to enhance the feature point
extraction algorithm is the integration of machine learning
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techniques. Training models on abundant sample data can
facilitate automatic learning and extraction of feature points
tailored to specific challenging scenarios. Machine learning,
leveraging relationships between samples, holds promise for
extracting more discriminative feature points.

In summary, improving the feature point extraction
algorithm is crucial for enhancing matching performance in
scenes marked by low lighting and large featureless surfaces.
This improvement contributes to overall accuracy and robust-
ness in image processing and analysis. Consequently, this
area stands out as a significant focus for our future research
endeavors.

V. CONCLUSION

This paper proposes the MSGSA network for two-view
correspondence learning, consisting of three key components:
the MB module, the GTC module, and the GSA module.
The MB module enhances spatial transformations, the GTC
module focuses on GTC, and the GSA module leverages
graph neural networks and transformers to mine semantic
relationships, improving the matching pair set quality post-
outlier removal. Experimental results on two public datasets
underscore the superior performance of MSGSA over various
state-of-the-art methods. In situations with a high number
of outliers, outlier removal resembles a binary classification
problem with significant class imbalance. To further refine our
method, we plan to address the challenge of class imbalance
in our future research efforts.
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